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Introduction

 NEESR-II: System Behavior Factors for Composite and Mixed
Structural Systems

* Analytical Investigation

Following prior work focusing on RCFT members and extending to
CCFT and SRC members

Three-dimensional distributed plasticity mixed beam element
formulation

Comprehensive uniaxial cyclic constitutive models for concrete core
and steel tube

Parametric Studies
e Developing rational system response factors (ATC-63)
* Investigations of beam-column strength

e Establishing guidelines for the computation of equivalent composite beam-
column rigidity to be used in seismic analysis and design of composite frames

 Experimental Investigation
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Element Formulation

Three-dimensional distributed plasticity mixed beam
element formulation

Mixed basis allows for accurate analysis of material
and geometric nonlinearity

* Interpolation functions for both element displacements
and forces

Formulated in the corotational frame

Implemented within the OpenSees framework
e Suitable for static and dynamic analyses

o Utilizes built in coordinate transformations and sections



Concrete Backbone Curve

e hil ‘ Backbone curve in tension and compression
post-pea e~ o ,
degradation ; based on the model by Tsai (1988)

with
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Steel Backbone Curve

Plasticity model based on the incremental
bounding surface formulation by Shen et
—Fy =500 Pa; D=0 al. (1995) with modifications for CCFT

——Fy = 500 MPa; D/t = 60
—— Fy =500 MPa; D/t = 90

——Fy =500 MPa; D/t=120 i i members

——Fy =500 MPa; D/t = 150
[ [ [ I

DF

Local Buckling: R=2

S

e Strain at initial local buckling: & =#,(02139r**)

. f.(R../R) forR>R_. =0.17
e Residual stress: frsz{ o (Re/R) TOrR >Ry
fiy otherwise
e Degradation slope: f@e £
-0.02 -0.01 0 : 30

Strain (mm/mgh)

Residual Stresses:

Decreasing local
buckling strain

with increasing 0 INitial plastic Strain: 0.0006

Decreasing
residual stress
with increasing
D/t
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CCFT Model Validation

CBCO-C l
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CCFT Model Validation

Matsui & Tsuda 1996
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CCFT Model Validation

— Analysis

e

-~ | ——Experiment
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Cyclic plasticity model

Cyclic Behavior

Steel Concrete

Test #3; Marson & Bruneau 2004; Specimen: CFST 64

Rule based model by
Chang and Mander
(1994)

by Shen et al.
(1995)

Elastic unloading

Horizontal Force (kN)

Decreasing elastic zone h
& Smooth nonlinear

Bauschinger effect )
unloading,

Bounding stiffness

€ .
. 2 ool reloading, and
Local buckling = o
: = 8 transition curves
degradation £ -
: =
Elastiargnge: 7. x g 500 -7 —— Experiment
o — Analysis e  Cyclic tension
; . —
[1 15R /W }> 0.05 A ' " Percent Drift e  Opening and closing of
Fy Response of Extreme Steel Fiber Response of Extreme Concrete Fiber cracks

PlasticBmaeddfus: E”

p
{1 10R [ J>o.05
Fy

Stress (MPa)
Stress (MPa)

Strain (mm/mh)

D =406 mm; t = 5.50 mm; f'. = 37 MPa; F, = 449 MPa;
L =2,200 mm; P =1,000 kN



Cyclic Model Validation

— Analysis

Elchalakani & Zhao 2008; Specimen: F1413

Test #7

Test #3; Elchalakani & Zhao 2008; Specimen: F0411
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Full-Scale Beam-Column Tests

* Specimens chosen to fill gaps in prior
experimental research, namely high member
slenderness and section slenderness

 Experimentally determine

— Progression of bending stiffness (El ¢, .....)

— Beam-column interaction strength, including
stability effects

— Post-peak behavior and progression of damage of
members subjected to large cyclic deformations

 Provide complex set of data for validation of
computational models
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MAST Facility

T MAST

o -

Maximum non-concurrent capacities of MAST DOFs

Degree of Freedom Load Stroke/
Rotation
X-Translation +3,910 kN +406 mm
X-Rotation +12,080 kN-m ek °
NEES@Minnesota )
Y-Translation +3910 kN 1406 mm
The MAST facility permits the comprehensive RS Tation +12,080 kN-m +7°
testing of a wide range of composite beam- :
columns subjected to three dimensional Z-Translation £5,870 kN —
loading at a realistic scale. Z-Rotation +17,900 kN-m +10°

q

NEES

I




Measured Properties

HSS steel Concrete

Specimen L (mm) t (mm) Fy (MPa) F,(MPa) Es(MPa) | f'c(MPa) E:(MPa) f;(MPa)

measured measured  coupon coupon coupon [ measured measured measured
1-CCFT5.563x0.134-18ft-5ksi 5,499 3.24 383.4 487.6 193,984 37.92 27,579 7.58
2-CCFT12.75x0.25-18ft-5ksi 5,499 5.80 337.1 446.2 199,162 37.92 27,579 7.58
3-CCFT20x0.25-18ft-5ksi 5,525 5.98 328.0 470.7 200,262 37.92 27,579 7.58
4-RCFTw20x12x0.3125-18ft-5ksi 5,537 7.15 365.4 501.7 202,375 37.92 27,579 7.58
5-RCFTs20x12x0.3125-18ft-5ksi 5,537 7.15 365.4 501.7 202,375 37.92 27,579 7.58
6-CCFT12.75x0.25-18ft-12ksi 5,499 5.80 337.1 446.2 199,162 87.56 41,851 11.38
7-CCFT20x0.25-18ft-12ksi 5,534 5.98 328.0 470.7 200,262 87.56 41,851 11.38
8-RCFTw20x12x0.3125-18ft-12ksi 5,553 7.15 365.4 501.7 202,375 87.56 41,851 11.38
9-RCFTs20x12x0.3125-18ft-12ksi 5,553 7.15 365.4 501.7 202,375 87.56 41,851 11.38
10-CCFT12.75x0.25-26ft-5ksi 7,950 5.80 50.33 35,094 3.79
11-CCFT20x0.25-26ft-5ksi 7,995 5.98 328.0 470.7 200,262 50.33 35,094 3.79
12-RCFTw20x12x0.3125-26ft-5ksi 7,957 7.15 365.4 501.7 202,375 50.33 35,094 3.79
13-RCFTs20x12x0.3125-26ft-5ksi 7,969 7.15 365.4 501.7 202,375 50.33 35,094 3.79
14-CCFT12.75x0.25-26ft-12ksi 7,950 5.80 79.29 37,921 11.03
15-CCFT20x0.25-26ft-12ksi 7,976 5.98 79.29 37,921 11.03
16-RCFTw20x12x0.3125-26ft-12ksi 7,976 7.15 79.29 37,921 11.03
17-RCFTs20x12x0.3125-26ft-12ksi 7,976 7.15 79.29 37,921 11.03
18-CCFT5.563x0.134-26ft-12ksi 7,976 3.24 383.4 487.6 193,984 79.29 37,921 11.03




— Uniaxial and Rosettes Distributed Along
Height

— Measurements during concrete pouring
and testing

LVDTs

— Sets of three for biaxial curvature
measurement

String Pots
— Distributed along height

Krypton Coordinate Measurement
Machine

Video and Still Images

— Four towers for images of whole
specimen as well as base
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Load Case 1: Load Case 7-8:
Concentric Torsion
Loading
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Specimen 8

D =508 mm
B = 305 mm
t=7.15mm
. L=5,553mm

. f.=87.56 MPa
' Fy = 365.4 MPa

i

L
i
| W

— o
e T emAL -

i - - - - _-;=
R e |

______
I
-'.,.l"|'i'|

- i

-l

e e i i -
. S

fo o=
e e M —
B

.

k]

-:
" i

=

L |
== heﬂ
-. ELE L

-i‘

k
(.
&
i




Specimen 11

Load Case 1

Load Case 2; P = 2,669 kN

D =508 mm; t=5.98 mm;
L =7,995 mm;

f':=50.33 MPa; F, = 328.0 MPa
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5.98 mm;
7,995 mm;
400

— Experiment
200

— Analysis

L
50.33 MPa; F, = 328.0 MPa

Y Top Displacement (mm)
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—All Load Cases
- e Experimental Interaction Points D =508 mm; t = 5.98 mm,

L=5,525 mm;
f'c=37.92 MPa; F, = 328.0 MPa

) -Analytical Interaction Surface
* Experimental Interaction Points
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Concluding Remarks

Experimental and computational research on CCFT and
RCFT beam-columns

An accurate nonlinear model has been developed for
the analysis of circular concrete filled steel tubes
— Accuracy confirmed by validation to a broad range of
experimental results
— Future research includes parametric studies

Testing of the 18 beam-column specimens is complete

— More detailed comparisons (e.g., at the section or material
level) and conclusions are forthcoming based on more

detailed data reduction
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