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Introduction
• NEESR‐II: System Behavior Factors for Composite and Mixed 

Structural Systems
• Analytical Investigation

– Following prior work focusing on RCFT members and extending to 
CCFT and SRC members

– Three‐dimensional distributed plasticity mixed beam element 
formulation

– Comprehensive uniaxial cyclic constitutive models for concrete core 
and steel tube

– Parametric Studies
• Developing rational system response factors (ATC‐63)
• Investigations of beam‐column strength 
• Establishing guidelines for the computation of equivalent composite beam‐

column rigidity to be used in seismic analysis and design of composite frames

• Experimental Investigation



Element Formulation

• Three‐dimensional distributed plasticity mixed beam 
element formulation

• Mixed basis allows for accurate analysis of material 
and geometric nonlinearity
• Interpolation functions for both element displacements 

and forces

• Formulated in the corotational frame

• Implemented within the OpenSees framework
• Suitable for static and dynamic analyses

• Utilizes built in coordinate transformations and sections



Concrete Backbone Curve
Backbone curve in tension and compression 

based on the model by Tsai (1988)

Compression:

• Initial stiffness: 

• Peak stress:

– Confinement Pressure:

– Hoop Stress Ratio:

• Strain at peak stress:

• Post peak factor r: 
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Steel Backbone Curve
Plasticity model based on the incremental 
bounding surface formulation by Shen et 
al. (1995) with modifications for CCFT 

members

Local Buckling:

• Strain at initial local buckling:

• Residual stress:

• Degradation slope:

Residual Stresses:

• Initial plastic Strain: 0.0006
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Fy = 500 MPa; D/t = 30
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Experiment
Analysis

CCFT Model Validation

Fy = 283 MPa
f’c = 40.5 MPa
D/t = 152
L/D = 3.00

Yoshioka et al 1995
CC4‐A‐4

Fy = 283 MPa
f’c = 40.5 MPa
D/t = 50.4
L/D = 3.00

Fy = 203 MPa
f’c = 110 MPa
D/t = 171
L/D = 3.48

Han & Yao 2004
scv2‐1

Fy = 303 MPa
f’c = 58.5 MPa
D/t = 66.7
L/D = 3.00

 

O’Shea & Bridge 
2000

R12CF1

Yoshioka et al. 1995
CC4‐D‐4
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Experiment
Analysis

CCFT Model Validation

Elchalakani et al 2001
CBC6

Wheeler & Bridge 2004
TBP002

Fy = 351 MPa
f’c = 40.0 MPa
D/t = 63.4
L/D = 2.96

Elchalakani et al. 2001
CBC0‐C

Fy = 400 MPa
f’c = 23.4 MPa
D/t = 110
L/D = 7.28

Wheeler & Bridge 2004
TBP005

Fy = 351 MPa
f’c = 48.0 MPa
D/t = 71.3
L/D = 8.33

 

Fy = 456 MPa
f’c = 23.4 MPa
D/t = 23.5
L/D = 10.5
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Experiment
Analysis

CCFT Model Validation

Matsui & Tsuda 1996
C4‐5

Fy = 414 MPa
f’c = 31.9 MPa
D/t = 36.7
L/D = 4.0

e/D = 0.625

Fy = 435 MPa
f’c = 58.0 MPa
D/t = 34.5    
L/D = 10.6
e/D = 0.197

Fy = 414 MPa
f’c = 31.9 MPa
D/t = 36.7
L/D = 12.0
e/D = 0.125

Fy = 410 MPa
f’c = 58 MPa
D/t = 42.4
L/D = 19.1
e/D = 0.393

Kilpatrick & Rangan 1999
SC‐0

Matsui & Tsuda 1996
C12‐1

Kilpatrick & Rangan 1999
SC‐14
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Analysis

CCFT Model Validation

Nishiyama et al. 2002
EC4‐D‐4‐06

Nishiyama et al. 2002
EC8‐C‐4‐03
Fy = 834 MPa
f’c = 40.7 MPa
D/t = 34.3
P/Po = 0.30
L/D = 3.0

Ichinohe et al 1991
C06F3M

Fy = 420 MPa
f’c = 64.3 MPa
D/t = 51.5
P/Po = 0.30
L/D = 2.0

Fy = 283 MPa
f’c = 39.9 MPa
D/t = 50.7
P/Po = 0.35
L/D = 3.0

Nishiyama et al. 2002
EC4‐A‐4‐035

Fy = 283 MPa
f’c = 40.7 MPa
D/t = 152
P/Po = 0.60
L/D = 3.0



Cyclic Behavior
Steel

Cyclic plasticity model 
by Shen et al. 
(1995)

• Elastic unloading

• Decreasing elastic zone

• Bauschinger effect

• Bounding stiffness

Local buckling 
degradation 

• Elastic range:

• Plastic modulus:

Concrete 

Rule based model by 
Chang and Mander
(1994)

Smooth nonlinear 
unloading, 
reloading, and 
transition curves

• Cyclic tension

• Opening and closing of 
cracks
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Analysis

D = 406 mm; t = 5.50 mm; f’c = 37 MPa; Fy = 449 MPa; 
L = 2,200 mm; P = 1,000 kN



Cyclic Model Validation
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Analysis

D = 110 mm; t = 1.25 mm; f’c = 23.1 MPa; Fy = 430 MPa
L = 800 mm

D = 89.3 mm; t = 2.52 mm; f’c = 23.1 MPa; Fy = 378 MPa
L = 800 mm

 



Full‐Scale Beam‐Column Tests

• Specimens chosen to fill gaps in prior 
experimental research, namely high member 
slenderness and section slenderness

• Experimentally determine
– Progression of bending stiffness (EIeffective)
– Beam‐column interaction strength, including 
stability effects

– Post‐peak behavior and progression of damage of 
members subjected to large cyclic deformations

• Provide complex set of data for validation of 
computational models



MAST Facility

The MAST facility permits the comprehensive 
testing of a wide range of composite beam‐
columns subjected to three dimensional 
loading at a realistic scale.

NEES@Minnesota

Degree of Freedom Load Stroke/ 
Rotation

X‐Translation ±3,910 kN ±406 mm

X‐Rotation ±12,080 kN‐m ±7°

Y‐Translation ±3910 kN ±406 mm

Y‐Rotation ±12,080 kN‐m ±7°

Z‐Translation ±5,870 kN ±508 mm

Z‐Rotation ±17,900 kN‐m ±10°

Maximum non‐concurrent capacities of MAST DOFs



Measured Properties
HSS steel Concrete

L (mm) t (mm) Fy (MPa) Fu (MPa) Es (MPa) f'c (MPa) Ec (MPa) ft (MPa)Specimen
measured measured coupon coupon coupon measured measured measured

1-CCFT5.563x0.134-18ft-5ksi 5,499 3.24 383.4 487.6 193,984 37.92 27,579 7.58
2-CCFT12.75x0.25-18ft-5ksi 5,499 5.80 337.1 446.2 199,162 37.92 27,579 7.58

3-CCFT20x0.25-18ft-5ksi 5,525 5.98 328.0 470.7 200,262 37.92 27,579 7.58
4-RCFTw20x12x0.3125-18ft-5ksi 5,537 7.15 365.4 501.7 202,375 37.92 27,579 7.58
5-RCFTs20x12x0.3125-18ft-5ksi 5,537 7.15 365.4 501.7 202,375 37.92 27,579 7.58

6-CCFT12.75x0.25-18ft-12ksi 5,499 5.80 337.1 446.2 199,162 87.56 41,851 11.38
7-CCFT20x0.25-18ft-12ksi 5,534 5.98 328.0 470.7 200,262 87.56 41,851 11.38

8-RCFTw20x12x0.3125-18ft-12ksi 5,553 7.15 365.4 501.7 202,375 87.56 41,851 11.38
9-RCFTs20x12x0.3125-18ft-12ksi 5,553 7.15 365.4 501.7 202,375 87.56 41,851 11.38

10-CCFT12.75x0.25-26ft-5ksi 7,950 5.80 50.33 35,094 3.79
11-CCFT20x0.25-26ft-5ksi 7,995 5.98 328.0 470.7 200,262 50.33 35,094 3.79

12-RCFTw20x12x0.3125-26ft-5ksi 7,957 7.15 365.4 501.7 202,375 50.33 35,094 3.79
13-RCFTs20x12x0.3125-26ft-5ksi 7,969 7.15 365.4 501.7 202,375 50.33 35,094 3.79

14-CCFT12.75x0.25-26ft-12ksi 7,950 5.80 79.29 37,921 11.03
15-CCFT20x0.25-26ft-12ksi 7,976 5.98 79.29 37,921 11.03

16-RCFTw20x12x0.3125-26ft-12ksi 7,976 7.15 79.29 37,921 11.03
17-RCFTs20x12x0.3125-26ft-12ksi 7,976 7.15 79.29 37,921 11.03

18-CCFT5.563x0.134-26ft-12ksi 7,976 3.24 383.4 487.6 193,984 79.29 37,921 11.03



Setup and Instrumentation
• Strain Gages

– Uniaxial and Rosettes Distributed Along 
Height

– Measurements during concrete pouring 
and testing 

• LVDTs 
– Sets of three for biaxial curvature 

measurement
• String Pots

– Distributed along height
• Krypton Coordinate Measurement 

Machine
• Video and Still Images

– Four towers for images of whole 
specimen as well as base 



Typical Load Protocol
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Load Case 1:
Concentric 

Loading

y
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Load Case 2-3:
Uniaxial Cyclic

Load Case 4-6:
Biaxial Cyclic

Load Case 7-8:
Torsion



Specimen 8

D = 508 mm
B = 305 mm
t = 7.15 mm
L = 5,553 mm
f‘c = 87.56 MPa
Fy = 365.4 MPa



Specimen 11
Load Case 2; P = 2,669 kN Load Case 3; P = 1,334 kNLoad Case 1
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D = 508 mm; t = 5.98 mm; 
L = 7,995 mm; 

f‘c = 50.33 MPa; Fy = 328.0 MPa



Load Case 4; P = 2,002 kN
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D = 508 mm; t = 5.98 mm; 
L = 7,995 mm; 

f‘c = 50.33 MPa; Fy = 328.0 MPaSpecimen 11



Specimen 3

D = 508 mm; t = 5.98 mm; 
L = 5,525 mm; 

f‘c = 37.92 MPa; Fy = 328.0 MPa
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Concluding Remarks
• Experimental and computational research on CCFT and 
RCFT beam‐columns

• An accurate nonlinear model has been developed for 
the analysis of circular concrete filled steel tubes
– Accuracy confirmed by validation to a broad range of 
experimental results

– Future research includes parametric studies

• Testing of the 18 beam‐column specimens is complete
– More detailed comparisons (e.g., at the section or material 
level) and conclusions are forthcoming based on more 
detailed data reduction
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